
AD-AG85 L26 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/9 17/2
DIFFUSION APPROXIMATIONS FOR T1HE COOPERATIVE SERVICE OF VOICE A-ETC(U)
FEB 80 J1 P LEHOCZKY, D P SAVER

UNCLASSIFIED W S000 7 NL

ImhhhEL~h



L2iZ L1~ NW
~ k.H~B1.25 ~II~I 1.4 ~tL8

11111 IIIII~ Idil I .6



NPS5S-80-007

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
! JUN 4 1980

A

DIFFUSION APPROXIMATIONS FOR

THE COOPERATIVE SERVICE

OF VOICE AND DATA MESSAGES

by

J. P. Lehoczky

and

D. P. Gaver

February 1980

Approved for Public Release; Distribution Unlimited.

U-) Prepared for:

iNaval Postgraduate School
Monterey, California 93940

----- 80 5 30 083



t

NhVAL POSTGPADUATZ SCHOOL
MOffimtLY, CALIFORNI

Rear Admiral J. J. Ekelund J.,R. Borsting
Superintendent Provost

This report was prepared by:

J. P. Ikhoczky, Profesgo,
Carnegie-Mellon University

D. P. Gayer, Professor
Department of Operations Research

Reviewed by: Released by:

Michel . Sverains ReserarchM.Tlls
Department ofOeain eerhDean of Research



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Shin Dw0eseeQ~

REPORT DOCUMENTATION PAGE 89FOgZ COUPLETaBEG FORM

/44 S5587 VT ACCCUIOu to 2. RECIPIENT'SCATALOG NUMBER

NMIPRSoMIN ORG.....

Navalio Postrduat on School AREA cooperativeTTechnica

Monterey CA 93940v

II.~~6 COOTROLLIN OORC NAANE AND ADRES

Naval Postgraduate School ARE AFeKb NT j

Monterey, CA. 93940 HM

M1 ONTRO0ING OGFICY NAME AN ADRESSdfrnISonctShU01.)S.CRTYCAS

14. MOITI O N STATEMENTASS (. lD Rpa

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of thAbstract onforad in Block 20, it different heom Reps")

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Conu an roers sidte it.1 noceasavy And Idenify by block nanbor)

Queues Semigroup Theory
Communications Probability Modeling
Data Transmission
Voice Transmission

20. ASITRACT (Con~ on reverse side I fne.vsv .ide Identify by WeekA nainbe)

IS probability model is presented for a set of communication channels that

share the service of data and voice transmissions. A diffusion-theoretic

approximation is derived, utilizinq new results of Burman (1979). It is

shown that the data queue (which is of low priority relative to voice)

is approximated by a Wiener process.

DD I 't AN673 1473 EDITION OF NOV 65 15 OBSOLETE Unclassified

4/ 120460 SECURITY CLASSIICATION OP THIS PAGE (hin 50. MI 0

L



DIFFUSION APPROXIMATIONS FOR THE COOPERATIVE SERVICE

OF VOICE AND DATA MESSAGES

by D-'C

J. P. Lehoczky Justiricat±,,
Carnegie-Mellon University . . - -

Pittsburgh, PA t I

and

D. P. Gaver -- ----
Naval Postgraduate Schoo. Dist

Monterey, CA )cl

INTRODUCTION

In this paper we study the behavior of a queueing

system which arises in the study of certain communication

networks. Specifically we study a queueing phenomenon which

arises with the SENET network, as described by Coviello

and Vena (1975) or Barbacci and Oakley (1976). This network

allows for both voice and data messages to be transmitted

over the same channels by using a special type of integrated

circuit and packet-switched multiplexor structure. The two

classes of traffic have substantially different performance

requirements. Voice messages tend to possess great redundancy,

and hence not to be sensitive to channel error rates, while

data is very sensitive to channel error, havinq essentially

no redundancy. Voice messages on the other hand have critical

timing requirements and cannot be queued, while data is
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relatively insensitive to timing and can be queued. Addition-

ally, voice messages tend to be very long relative to data

messages which can be broken up into small packets. These

special requirements have led to the following queueing net-

work. A node of the network consists of c + v channels or

servers. The voice messages are assigned to v channels and

do not queue. Thus the voice messages operate as a loss

system. Data messages may use c channels exclusively and

any unused voice channels; however, voice preempts data using

voice channels. Data messages are queued if necessary.

Typical performance measures that one may wish to calculate

include the loss rate of voice traffic and the mean data

queue length.

We make standard probabilistic assumptions. Specifically,

we assume voice traffic arrives according to a Poisson(A)

process and each voice message has an independent exponential(w)

4service time. Data messages are assumed to have independent

exponential(n) service times and arrive according to a Poisson(6)

process. With these assumptions voice is an M/M/v/v loss

system, and data is an M/M/S system where S = c + v - V(t)

with V(t) = number of voice messages in service. The

stochastic process {(X(t),V(t)), t > 0} is Markov with

state space x {0,1,...,v) where X(t) = data system size

at time t. One can easily write the Kolmogorov forward

equations appropriate for this system; however, these equations

do not yield a closed form solution. To describe this system
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one must either numerically solve the forward equations or

introduce approximations.

This system has been studied previously by a number

of researchers including Halfin and Segal (1972), Halfin (1972),

Fischer and Harris (1976), Bhat and Fischer (1976), Fischer

(1977), Chang (1977), and Gaver and Lehoczky (1979a,b). The

last two papers introduce a "fluid flow" and a diffusion

approximation and derive explicit formulas for data queue

behavior. These papers focus on the important case in which

P = 6/rI > c. In such a situation the data messages must

have access to voice channels for the system to be stable.

Furthermore, it was assumed that n/. was large, say 104.

Under these circumstances the data flow could be treated

deterministically. Suppose we define pV = A j/ and

q = (pv/V.)/I p P3/j!, the Erlang B blocking probability.

The total traffic intensity on the c + v channels is given

by pd + PV(l- q ) or we could define P = (Od + Pv(-q))/(c+v).

A heavy traffic approximation can be derived for this case

p P 1. Such an approximation was derived in Gaver and

Lehoczky (1979b) assuming n/u was large; a Wiener process

with reflecting boundary was found appropriate. In this

paper we derive a heavy traffic approximation for the system

without the fluid flow assumption that n/p is large.

The methodology is drawn heavily from the approach of Burman

(1979). In this approach one characterizes a Markov process

3



by its infinitesimal generator. One next suitably normalizes

the process so that the generator converges to a limiting

infinitesimal generator (in this case to that of a reflected

Brownian motion). This convergence allows the conclusion that

the finite dimensional distributions of the normalized Markov

process converge. The diffusion approximation consists of

treating the actual process through its limiting behavior.

The details are somewhat complicated by the presence of a

boundary.

,4
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2.

Le t {(X(t) ,V (t)) t > 01 be a bivariate Markov

process with state space S -Zx {0,lp..'.vl . Here

{V(t), t > 01 is marginally an M4/M/v/v loss system with

arrival rate A~ and service rate Vi. Conditional on V(t),

{X(t), t > 01 is an ?4/M/(c + v - V(t)) queueing system with

arrival rate 6 and service rate ni. We say that the V

process subordinates the X process. We let

1 -(l+p V) v

2 -(+ V) P

*(2.1)

Pv

V -V

the infinitesimal generator of the V process.

The generator of the (X,V) process is given by

Qf(x,k) + 6(f(x+1,k) -f(x,k))

+ n(c+v-k) (f(x-l,k)-f(x,k))

Af(x,k) =if x > c+v-k (2.2)

Qf(x,k)+ 6(f(x+l,k) - f(x,k))

+ n x(f (x-1,k) - f(xk))

if x < c+v-k

5



for f:S * R continuous where

Qf(x,k) - v f(x,k+l) - (k+P v ) f(xk) + kf(x,k-1)

(2.3)

v>k >0

and f(x,-l) = f(x,v+l) = 0. Clearly Qf(x) = 0, that is Q

annihilates functions of x alone. We next normalize the

(X,V) process by defining Xn (t) = X(nt)/ii and Vn (t) = V(nt).

One can calculate the generator of the Markov process

{(xn (t), V n(t)), t > 0} having state space

Sn = {0, 1i, 2// ,... }x {O,l,...,v} to be

nQf(x,k) +6 n(f(x + l//hn,k) - f(x,k))

+ q n (f(x - 1/Arn,k) - f(x,k))

if x > c + v k (2.4)

A f(:K,k)=n nQf(x,k) +6n(f(x + 1/-,k) - f(x,k))

+ r) n V (f(x + l//E,k) - f(x,k))

if x = 0, l/v'n,..., (civ-k)AIi.

We assume f(xk) has three bounded derivatives in x

for each fixed k. With this assumption one can expand terms

in (2.4) in a Taylor series and rewrite as

6
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nQf(x,k) + nl/2 f x(x,k)(6-n(c+v-k))

+1
+ 7 fxx(X,k) (6+n (c+v-k))

+ O(n
1 / 2)

if x > (c+v-k)//-

A nf(x,k) = (2.5)

nQf(x,k) + n1/2fx (x,k) (6- oi)

+ f (x, k) (6 +n rn-x) + 0(n - / 2)

if x = 0, i/fE, ... , (c+v-k)/VW

2

f(x,k) and fxx (x,k) = f(x,k)

We ultimately wish to prove that the finite dimensional

distributions of {Xn (t), t > 01 converge to those of a

Wiener process with reflecting barrier at the origin. This

can be restated in terms of semi-groups. We let {Tn t > 01

be the semi-group of operators associated with

{(Xn (t), Vn (t)), t > 0} and {Tt, t > 0} be that associated

with a Wiener process having reflecting barrier at 0. Let

g be a continuous function g:R' - R'. Knowledge of the

semi-group is equivalent to knowledge of the transition

functions by taking a sequence of g's which approximate

indicator functions. We wish to prove ITn g(x,k) - To g(x) l 0t

as n for all (x,k). Here Tn g(x,k) = E(g(X=

Vn(0) - k). The presence of the variable k prevents this

7
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from being done directly. The method we use is to construct

a convenient sequence of functions <g which converge

in some sense to g. We write

liTtg - TtgJJn < 1J(Ttg) n  TgIn + n-

+ I~tgn - (Ttg)nlIn  (2.6)

where !I refers to the sup norm over Sn. Both Tn andnn

Tt are contraction semigroups.
00 

0*<(Ttg)n>n=l is the sequence of functions constructed

from Ttg. Our goal is to show tha*. each of the three terms

on the right side of (2.6) converges to 0. The first and

second terms can be handled similarly. For any function g,
00

we must guarantee that the constructed <gn>n=l sequence

satisfies ig n - g%1  0. It will follow that II(Ttg) n - Ttgl n + 0.

Moreover, since {Tt , t > 0} is a contraction semi-group

JIT g tgn n - g nhg n which also converges to 0. The
00

sequence <gn>n=l will be chosen in such a way that the third

term converges to 0.

We focus on a convergence determining class of functions

g, those which are bounded and have three bounded derivatives.

For such a function g(x) we define

gn(x,k) = g(x) + - u(x,k) + 1v(xk) (2.7)n/n n

8



where u and v have two bounded derivatives in x for

each fixed k. The functions u and v will be determined

* explicitly later and are chosen to control the third term in

(2.6). Clearly when g nis defined by (2.7), lIg ngLn = O(n-1/2)

and therefore converges to 0 as required.

one can apply the generator A nto gnto derive

~q (x) + n 1 /2 [0Qu(x, k) + g I(x) (6 -n (c+ v-k))

+ [ Qv (x, k) + ux (x, k) (6--n(c+v-k))

+ 9"in (x) (6 n~ (c+v-k))]I + On12

if x > (c+v-k)/fEn

ANgn(x,k)=

nQg + +n 1 / 2 [Qu(x,k) + g' (x) (6- rn 1 12 x,

+ [Qv(x,k) + u (x,k)(6-nn1 / 2 x) + 1~ g"(x)(6+nn 1 / 2 x)]

+O0(n1/

if x = 0, i/i,.,(c+v-k)//ii-

where u x (x,k) = ~u(x,k). Recall that Q annihilates functions

of x alone, thus nog(x) E0. We want to have A ngn(xik)

converge to a finite limit and to have that limit be inde-

pendent of k. For this to occur, the n 1 /2  term must be

controlled and the functions u and v must be chosen in

such a way as to eliminate the variable k.

9



The n 1/ 2 coefficient in (2.8) can be rewritten by

adding and subtracting

v

vIO rkg' (x) (6 -n (c+v-k)) = -n (c+v) (1-p) g' (x)k-0

We next pick u(x,k) to be a solution of

()u(x,k) = -(g'(x) 1)(pd-(c+v-k)) + g'(x) n(c+v)(l-p))

= -g'(x) n(k-Pv(l-q)) (2.9)

When u(x,k) is any solution of (2.9), the coefficient of

the n1 / 2 term in (2.8) becomes

-g' (x) T)(c+v) (1- p) if x. v-

g(x) n((C+v)p - n1/ 2x - k) if 0 < x < c+v-k

Equation (2.9) can be solved explicitly. Define

a = -g'(x) n(k-P (l-q))/I', so that (2.9) can be written as

-PV (u(x,k)-u(x,k-l))-(k-l) (u(x,k-l)-u(x,k-2)) = ak-1, k =.....,v

-v(u(x,v)-u(x,v-1)) = av  (2.10)

10



Equation (2.10) has a solution since 0 Vkk =0

where <7k>v  is the stationary distribution associated

with Q, or Tkr (P k)/( =0 p it). The solution is

given by

k-1
..Iia= -g' (x) nTE

u(x,k) - u(x,k-1) = .=l

Pv,)C-l Pv7Tk-i

where
k

Tk = i ai(l-Pv(l-q)) and Tv = 0.
10'=

Clearly

u(x,k) = u(x,0) - g' (x)n Ti k < v (2.11)
)iPV 71-

where u(x,0) is arbitrary. We let u(x,0) = g' (x) so

k 'r.
u(x,k) = g'(x) - 1 - 0 < k < V (2.12)

For the choice of u specified by (2.12) we next wish

to insure that the limiting generator is independent of the

variable k. The function v is chosen to eliminate the

dependence on k. The 0(1) term of (2.8) is given, for

x > (c+v-k)/ VE, by

11d



Qv(xk) + g"(x) 1 n- ( -n (c+v-k))Ov~xk) +g(L v" 0- i-i ri-i

+ 1 g" (x) ( +n (c+v-k))

- Qv(xk) + H(x,k).

Let i(x) - Ik=V 7kH(x
'k) and consider Qv(x,k) + (H(x,k)-i(x))+i(x).

We now let v(x,k) be any solution of

Qv(x,k) = -(H(x,k) - fi(x)) . (2.13)

Equation (2.13) has a one-parameter family of solutions,

since IV=0 nk(H (x'k ) - fi(x)) = 0. When v(x,k) is chosen

to be any solution of (2.13), the 0(1) term of (2.3),

for x > (c+v-k)//ff, will become H(x) and will therefore

be independent of k. It remains to calculate H(x).

V k T ~ ) 6 _n(
H(x)= g"(x) I- i ) (6- (+v-k))lk= 0 k  1jPv i=l i-I

+ 1 (6 +n (c+v-k))

= g"(x) n (6 -n (c+v-k) T (2.14)I v k k= i=l i-J

g"(x) n6- I rT (k-DP(l-q)) T

+ n(c+v)(-p) v 7t k T

Jv k=0 ki=l ni-l

12
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The second term can be rewritten by interchanging the order

of summation. The third term is 0(1-p). We find

fi(x) = g"(x) ki = (k- V (l-q)) + 0(1-0)

- _ n2 v-i T. 1
L g" W FS -a j-A (TV-T) + 0 (1-P)JL ljPv i=0 W i

with TV = 0 or

2 -

-(x) = g"(x) n V + O(i-P) . (2.1s)
v i=0 i

For the functions u and v specified by (2.12)

and (2.13), equation (2.8) can be rewritten as

-n112 (1-P) (o+v) ng, Wx

2
-1 T. ( _ 1 2

+4nPd + P = P -) g" (x) +0(n 1  )

for x > (cfv-k)/Vn

Angn (x,k) = (2.16)

n1/2 n[(c+v)p -n 1 /2x-k]g' (x)

v-1 T2
+ g"(x) L n I -+ O(i-P)

OPV i=0 i

" c~v-k'n 1/2 X) .-D-n 1=O - ] + 0o(n - 1 / 2 )

fdr x < (c +v-k) //

13

.4
f



We now introduc the "heavy traffic approximation.*

In order for the generator to converge to a limiting

generator we must have 1-p -O(n 1 / 2 ). Specifically, we

assume =pn = 1 - (e/5) for some e > 0. In this case,

n1/2 (1-P) 0 9, and (2.16) becomes

[2
-en(c+v)g"(x) + n pd + n _ g"lx) + (n -

for x > (c+v-k)/Vn

A ngn(xk) - (2.17)

nr[(c+v)p-n /2x-k~n1/29 '(x)

2

+ n g " (x ) i= + _
It v i=O i

1/2 k T
- (c+v-k-n x) - 1 i.1

jv i=0 '

for x < (C+v-k)//

We now define a limiting generator A with domain

consisting of all functions g having three bounded derivatives

and g'(0) = 0. Let

r + v-i Ti 1
A.g(x) = -On (c+v) g' (x) + n d +  v Ii g"(x),

x > 0 (2.18)

14
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A is the generator of a Markov process which

corresponds to a Wiener process with drift -enr(d+v), scale

2n [Pd +  2 v Tv
0v i=O W

and a reflecting barrier at 0. The O(n 1 " 2 ) terms involve

the first three derivatives of g which are bounded. It is

clear from a direct comparison of (2.16) and (2.18) that

IAngn (x,k) - A gI - 0 as n - - for all x > 0 and k

arbitrary. In addition, g' (0) = 0 is necessary for the

generator to converge at x = 0. Unfortunately even assuming

g'(0) = 0,

2 k T.
IAng(Ok) - A.g(0)I - (c+v-k) n_ I -. g"(0) as n

Pv i=0 i

rather than to 0. One needs a special argument to handle

this lack of convergence at the boundary.

We set out to prove the third term in (2.6) converges

to 0. Standard semi-group results (see Burman, 1979, p. 33)

give

(T00g)~ - _ ( I~s(Aow) - A w)dS (2.19)

where w = w(t,x) = Ttg(x). Recall that w. = w +(l/Vn)u+(l/n)v

with u and v defined by (2.12) and (2.13) with g replaced

by w. It follows that

15

.... . . , ,



11T ng-{ Mog) 11n

0n

t n (

f IT n ((Aw ) -A w)JI dS + * 11f It)~0 t- c n 0 T_(~- w d

t t
_ I II(Aw) n-Awl IdS + 111 Tn (A w-Awnn)dS n •

00 00

The first term is clearly O(n- 1 / 2 ). It remains to

show that the second is O(n - 1 / 2 ) as well. We have shown

IAcw - Anw n = O(n - 1 / 2 ) except at the boundary where it

is 0(l). We split the integral into two parts, for one

of which the process is away from the boundary, and for the

other, near the boundary. The integral away from the boundary

has an integrand which is O(n 1/2). The integral near the

boundary is also O(n-1 / 2) since under a heavy traffic

assumption the process is rarely near the boundary. The

details are merely summarized here; they are based on the

ideas of Burman (1979).

Let Ion be the indicator function of

0, c+v-k

and Iln be the indicator of

16



We have

Il Ts(A w -AnWn)dSin
0

SI~ TntsiAW - AnWn)IllndI fn + IfTts - AnWn)I~ndII n

t tIft A w - AnWnnIln +Aw - AW n If T IndSn

-0 0n n

0 0- 1/2 0 n 1n0 t-1/On2

The first term is O(n / ), since IA w - Awn = O(n - 1 / 2 ) off

the boundary. The factor IIA w - An w nIl O(1), thus it remains

to show that

If TtnsI ndSiI = O(n 1 / 2)

0 n

This gives the total time in 10,t] spent near the boundary.

We bound

t

If TtS I dSI n
0 t-S On n

by first introducing a function h(x) not in the domain of

A.- We let h(x) have bounded support, be infinitely

differentiable and be given by h(x) = x for x near 0.

One can construct hn (x) using (2.7) and apply An to

hn  to find
17
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0(1) if x > c+v-k
-

Ah = (2.20)

n/2r((c+v)p-n /2x-k) + 0(l) if x < c+v-k

One has

it
T~ - h ft Tn-A hdS0

t t

f f TsAnhnIndS + f TsAnhnIndS.
0 0

It follows that

t t
11f TsAnhnI0ndS1n < ltnhn- hn1n + 11f TsAnhnI dSjn

< 211h nin + 0(1)

t
We have shown 11 T'-A hnIdA l to be bounded in n. An

application of (2.2) shows

t nl/2 x  -t

jft A h I dAli- n1/2nlC+vlp - - k + 0(1) 111! TsIondslln0 S n n 0 SO

is bounded in n. It follows that 11f tsl~nd811n- Oln-1/2

18
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This finally concludes the argument which shows
he o 12 nce by (2.6) JITt n tl~ O(n-I/2)

Iitgn - (T g)nIIn = 0(n 2 ), he Tg TglI n

We have thus shown that the finite-dimensional distri-

butions of the (Xn(t), Vn(t)) process converge to those

of a Wiener process with drift -Onr(c+v) scale

n (Pd. + P

and reflection at 0. The diffusion approximation treats

Xn(t) as though it were such a Wiener process. For instance,

the limiting Wiener process has a stationary exponential dis-

tribution with parameter

0 (c+v)

V-I1(/.Pd + v0- i=0

This is a distribution for X(nt)/V and suggests X(t)

will have a steady state distribution given approximately

by an exponential with parameter

Sv-i

P I~viiO Ir "

The steady state mean data queue length would then be

19



nv-1 T

E(X(t)) - (2.21)
(c + v) (1-p)

It is interesting to consider the special case c - 0,

v = 1 where the two types of traffic use the same channel.

Under heavy traffic P = Pd +Pv/(l+Pv)' So Pd (l+PV)

The mean data queue length derived from the diffusion approxi-

mation (2.21) will be

(Pd 1-PPd P v

The latter is the exact expression derived by Fisher (1978)

for this case. The expression (2.21) represents a generaliza-

tion of the results of Gaver and Lehoczky (1979b). In this

paper, a diffusion approximation is given based on the fluid

flow assumption for the data. For this case the result is the

same except that the scale is given by

2 2
n v-i

v i=0 Ti

rather than n(I 2

The results derived in this paper therefore definitely generalize

20
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the results of Gaver and Lehoczky (1979b) since the variability

in the data queue is now included. When n/u is large, the

second term dominates, and the fluid flow approximation is

satisfactory.

The Wiener process approximation for the X(t) process

provides a method for studying the dynamics of that process.

For instance, suppose the data queue were at level x at

time t where x is large. One might wish to study the time

that elapses until the queue becomes empty. This is essentially

the duration of the busy period under heavy traffic and

corresponds to a first-passage time for a Wiener process. Let

us denote it by Tx . Straightforward martingale arguments

provide for its transform

E(e X) = exp A - m 2s] (2.22)

where

m = e(c+v)n Z n1 / 2 (l-p) (C4v)h

nl T)2-~
- =n Pd +  T- r [

7Pv i10

It is also easy to find the mean first-passage time

E(Tx ) = x/m (2.23)

21



One might also be interested in the area beneath the

sample path until emptiness occurs, since this area represents

the total time waited by all data customers involved in the

busy period. If Ax represents this area, simple backward

equation arguments give

2  2
E(Ax + a x (2.24)

2m

where m and a2 are given in (2.22).
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